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UNIT IV 

 
 Message Authentication & Hash Functions: Message Authentication & Hash 

Functions: Authentication requirements, authentication functions, message authentication 

codes, hash function, md5 message digest algorithm, secure hash algorithm (SHA), and 

digital signatures.. 

  



 

Message Authentication 

Message authentication is a procedure to verify that received messages come from the 

alleged source and have not been altered. Message authentication may also verify sequencing 

and timeliness. It is intended against the attacks like content modification, sequence 

modification, timing modification and repudiation. For repudiation, concept of digital 

signatures is used to counter it. There are three classes by which different types of functions 

that may be used to produce an authenticator. They re: 

 Message encryption–the ciphertext serves as auth nticator 
 

 Message authentication code (MAC)–a public function of the message and a secret 

key producing a fixed-length value to erve as authenticator. This does not provide a 

digital signature because A and B share the same key. 

 

 Hash function–a public function mapping an arbitrary length message into a fixed-

length hash value to serve as authenticator. This does not provide a digital signature 

because there is no key. 
 

MESSAGE ENCRYPTION: 

Message encryption by itself can provide a measure of authentication. The analysis differs for 

conventional and public-key encryption schemes. The message must have come from the 

sender itself, because the ciphertext can be decrypted using his (secret or public) key. Also, 

none of the bits in the message have been altered because an opponent does not know how to 

manipulate the bits of the ciphertext to induce meaningful changes to the plaintext. Often one 

needs alternative authentication schemes than just encrypting the message. 

 Sometimes one needs to avoid encryption of full messages due to legal requirements.



 Encryption and authentication may be separated in the system architecture.

 

The different ways in which message encryption can provide authentication, confidentiality 

in both symmetric and asymmetric encryption techniques is explained with the table below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MESSAGE AUTHENTICATION CODE 

An alternative authentication technique involves the use of a secret key to generate a 

small fixed-size block of data, known as cryptographic checksum or MAC, which is 

appended to the message. This technique assumes that both the communicating parties say A 

and B share a common secret key K. When A has a message to send to B, it calculates MAC 

as a function C of key and message given as: MAC=Ck(M) The message 



and the MAC are transmitted to the intended recipient, who upon receiving performs the same 

calculation on the received message, using the same secret key to generate a new MAC. The 

received MAC is compared to the calculated MAC and only if they match, then: 

1. The receiver is assured that the message has not been altered: Any alternations been done 

the MAC’s do not match. 

2. The receiver is assured that the message is from the alleged sender: No one except the 

sender has the secret key and could prepare a message with a proper MAC. 

3. If the message includes a sequence number, then receiver is assured of proper sequence as 

an attacker cannot successfully alter the sequence number. 

Basic uses of Message Authentication Code (MAC) are shown in the figure: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are three different situations where use of a MAC is desirable: 

 If a message is broadcast to several destinations in a network (such as a military control 

center), then it is cheaper and more reliable to have just one node responsible to evaluate 

the authenticity –message will be sent in plain with an attached authenticator.

 If one side has a heavy load, it cannot afford to decrypt all messages –it will just check 

the authenticity of some randomly selected messages.



 Authentication of computer programs in plaintext is very attractive service as they need 

not be decrypted every time wasting of processor resources. Integrity of the program can 

always be checked by MAC.

 
MESSAGE AUTHENTICATION CODE BASED ON DES 

The Data Authentication Algorithm, based on DES, has been one of the most widely used 

MACs for a number of years. The algorithm is both a FIPS publication (FIPS PUB 113) and 

an ANSI standard (X9.17). But, security weaknesses in this algorithm have been discovered 

and it is being replaced by newer and stronger algorithms. The algorithm can be defined as 

using the cipher block chaining (CBC) mode of operation of DES shown below with an 

initialization vector of zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The data (e.g., message, record, file, or program) to be authenticated are grouped into 

contiguous 64-bit blocks: D1, D2,..., DN. If necessary, the final block is padded on the right 

with zeroes to form a full 64-bit block. Using the DES encryption algorithm, E, and a secret 

key, K, a data authentication code (DAC) is calculated as follows: 



The DAC consists of either the entire block ON or the leftmost M bits of the block, with 16 ≤ 

M ≤ 64 

Use of MAC needs a shared secret key between the communicating parties and also MAC 

does not provide digital signature. The following table summarizes the confidentiality and 

authentication implications of the approaches shown above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

HASH FUNCTION 

A variation on the message authentication code is the one-way hash function. As with 

the message authentication code, the hash function accepts a variable-size message M as 

input and produces a fixed-size hash code H(M), sometimes called a message digest, as 

output. The hash code is a function of all bits of the message and provides an error-detection 

capability: A change to any bit or bits in the message results in a change to the hash code. A 

variety of ways in which a hash code can be used to provide message authentication is shown 

below and explained stepwise in the table. 



 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In cases where confidentiality is not required, methods b and c have an advantage over 

those that encrypt the entire message in that less computation is required. Growing interest for 

techniques that avoid encryption is due to reasons like, Encryption software is quite slow and 

may be covered by patents. Also encryption hardware costs are not negligible and the algorithms 

are subject to U.S export control. A fixed-length hash value h is generated by a function H that 

takes as input a message of arbitrary length: h=H(M). 

 A sends M and H(M)
 

 B authenticates the message by computing H(M) and checking the match

 

 
Requirements for a hash function: The purpose of a hash function is to produce a 

“fingerprint” of a file, message, or other block of data. To be used for message 

authentication, the hash function H must have the following properties 

 H can be applied to a message of any size
 

 H produces fixed-length output

 

 Computationally easy to compute H(M) for any given M



 Computationally infeasible to find M such that H(M)=h, for a given h, referred to 

as the one-way property

 Computationally infeasible to find M’ such that H(M’)=H(M), for a given M, 

referred to as weak collision resistance.

 Computationally infeasible to find M,M’ with H(M)=H(M’) (to resist to birthday 

attacks), referred to as strong collision resistance.

Examples of simple hash functions are: 

 Bit-by-bit XOR of plaintext blocks: h= D1⊕D2⊕…⊕DN

 Rotated XOR –before each addition the hash value is rotated to the left with 1 bit

 Cipher block chaining technique without a secret key.

 

MD5 MESSAGE DIGEST ALGORITHM 

The MD5 message-digest algorithm was developed by Ron Rivest at MIT and it remained as 

the most popular hash algorithm until recently. The algorithm takes as input, a message of 

arbitrary length and produces as output, 128-bit message digest. The input is processed in 

512-bit blocks. The processing consists of the following steps: 

1.) Append Padding bits: The message is padded so that its length in bits is congruent to 448 

modulo 512 i.e. the length of the padded message is 64 bits less than an integer multiple of 512 

bits. Padding is always added, even if the message is already of the desired length. Padding 

consists of a single 1-bit followed by the necessary number of 0-bits. 

2.) Append length: A 64-bit representation of the length in bits of the original message 

(before the padding) is appended to the result of step-1. If the length is larger than 264, the 64 

least representative bits are taken. 

3.) Initialize MD buffer: A 128-bit buffer is used to hold intermediate and final results of the 

hash function. The buffer can be represented as four 32-bit registers (A, B, C, D) and are 

initialized with A=0x01234567, B=0x89ABCDEF, C=0xFEDCBA98, D=0x76543210 i.e. 

32-bit integers (hexadecimal values). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.) Process Message in 512-bit (16-word) blocks : The h art of algorithm is the compression 

function that consists of four rounds of processing and this module is labeled HMD5 in the above 

figure and logic is illustrated in the following figure. The four rounds have a similar structure, but 

each uses a different primitive logical function, referred to as F, G, H and I in the specification. 

Each block takes as input the current 512-bit block being processed Yq and the 128-bit buffer 

value ABCD and updates the contents of the buffer. Each round also makes use of one-fourth of a 

64- element table T*1….64+, constructed 

from the sine function. The ith element of T, denoted T[i], has the value equal to the integer 

part of 232 * abs(sin(i)), where i is in radians. As the value of abs(sin(i)) is a value between 0 

and 1, each element of T is an integer that can be represented in 32-bits and would eliminate 

any regularities in the input data. The output of fourth round is added to the input to the first 

round (CVq) to produce CVq+1. The addition is done independently for each of the four 

words in the buffer with each of the corresponding words in CVq, using addition modulo 232. 

This operation is shown in the figure below: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.) Output: After all L 512-bit blocks have been proc ssed, the output from the Lth stage is 

the 128- bit message digest. MD5 can be summarized as follows: 

CV0 = IV CVq+1 = SUM32(CVq,RFIYqRFH[Yq,RF G[Yq,RFF[Yq,CVq]]]]) MD 

= CVL Where, 

IV = initial value of ABCD buffer, defined in step 3. 

Yq = the qth 512-bit block of the message 

L = the number of blocks in the message 

CVq = chaining variable processed with the qth block of the message. 

RFx = round function using primitive logical function x. 

MD = final message digest value 

SUM32 = Addition modulo 232 performed separately. 

MD5 Compression Function: 

Each round consists of a sequence of 16 steps operating on the buffer ABCD. Each step is of 

the form, a = b+((a+g(b,c,d)+X[k]+T[i])<<<s) 

where a, b, c, d refer to the four words of the buffer but used in varying permutations. After 

16 steps, each word is updated 4 times. g(b,c,d) is a different nonlinear function in each 

round (F,G,H,I). Elementary MD5 operation of a single step is shown below. 
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The primitive function g of the F,G,H,I is given as: 

 

 

 

 

 

 

 

 

 

 

 

 

 
Where the logical operators (AND, OR, NOT, XOR) are represented by the symbols 

(ᴧ,ᴠ, ~,(+)). 

Each round mixes the buffer input with the next "word" of the message in a complex, non-

linear manner. A different non-linear function is used in each of the 4 rounds (but the same 

function for all 16 steps in a round). The 4 buffer words (a,b,c,d) are rotated from step to step 

so all are used and updated. g is one of the primitive functions F,G,H,I for the 4 rounds 

respectively. X[k] is the kth 32-bit word in the current message block. T[i] is the ith entry in 

the matrix of constants T. The addition of varying constants T and the use of different shifts 

helps ensure it is extremely difficult to compute collisions. The array of 32-bit words 

X[0..15] holds the value of current 512-bit input block being processed. Within a round, each 

of the 16 words of X[i] is used exactly once, during one step. The order in which these words 

is used varies from round to round. In the first round, the 
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words are used in their original order. For rounds 2 through 4, the following permutations are 

used 

 ƿ2(i) = (1 + 5i) mod 16 

 ƿ3(i) = (5 + 3i) mod 16 

 ƿ4(I) = 7i mod 16 
 

MD4 

 Precursor to MD5 

 Design goals of MD4 (which are carried over to MD5) 

 Security 

 Speed 

 Simplicity and compactness 

 Favor little-endian architecture 

 Main differences between MD5 and MD4 

 A fourth round has been added. 

 Each step now has a unique additive constant. 

 The function g in round 2 was changed from (bc v bd v cd) to (bd v cd’) to make g 

less symmetric. 

 Each step now adds in the result of the previous step. This promotes a faster 

"avalanche effect". 

 The order in which input words are accessed in rounds 2 and 3 is changed, to 

make these patterns less like each other. 

 The shift amounts in each round have been approximately optimized, to yield a 

faster "avalanche effect." The shifts in different rounds are distinct. 

SECURE HASH ALGORITHM 

The secure hash algorithm (SHA) was developed by the National Institute of Standards and 

Technology (NIST). SHA-1 is the best established of the existing SHA hash functions, and is 

employed in several widely used security applications and protocols. The algorithm takes as 

input a message with a maximum length of less than 264 bits and produces as output a 160-

bit message digest. 
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The input is processed in 512-bit blocks. The overall processing of a message follows the 
structure of MD5 with block length of 512 bits and hash length and chaining variable length 

of 160 bits. The processing consists of following steps: 

1.) Append Padding Bits: The message is padded so that length is congruent to 448 modulo 

512; padding always added –one bit 1 followed by the necessary number of 0 bits. 

2.) Append Length: a block of 64 bits containing the length of the original message is added. 
 

3.) Initialize MD buffer:A160-bitbufferisued to hold intermediate and final results on the 

hash function. This is formed by 32-bit registers A,B,C,D,E. Initial values: A=0x67452301, 

B=0xEFCDAB89, C=0x98BADCFE, D=0x10325476, E=C3D2E1F0. Stores in big-endian 

format i.e. the most significant bit in low address. 

4.) Process message in bloc 512-bit (16-word) blocks: The processing of a single 512-bit 

block is shown above. It consists of four rounds of processing of 20 steps each. These four 

rounds have similar structure, but uses a different primitive logical function, which we refer 

to as f1, f2, f3 and f4. Each round takes as input the current 512-bit block being processed 

and the 160-bit buffer value ABCDE and updates the contents of the buffer. Each round also 

makes use of four distinct additive constants Kt. The output of the fourth round i.e. eightieth 

step is added to the input to the first round to produce CVq+1. 

5.) Output: After all L 512-bit blocks have been processed, the output from the Lth stage is 

the 160-bit message digest. 
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The behavior of SHA-1 is as follows: CV0 = IV CVq+1 = SUM32(CVq, ABCDEq) MD = 

CVL Where, IV = initial value of ABCDE buffer ABCDEq = output of last round of 

processing of qth message block L = number of blocks in the message SUM32 = Addition 

modulo 232 MD = final message digest value. 

 
 

SHA-1 Compression Function: 

Each round has 20 steps which replaces the 5 buffer words. The logic present in each one of 

the 80 rounds present is given as (A,B,C,D,E) <- (E + f(t,B,C,D) + S5(A)+ Wt+ 

Kt),A,S30(B),C,D Where, A, B, C, D, E = the five words of the buffer t = step number; 0< t 

< 79 f(t,B,C,D) = primitive logical function for step t Sk = circular left shift of the 32-bit 

argument by k bits Wt = a 32-bit word derived from current 512-bit input block. Kt = an 

additive constant; four distinct values are used + = modulo addition. 
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SHA shares much in common with MD4/5, but with 20 instead of 16 steps in each of the 4 

rounds. Note the 4 constants are based on sqrt(2,3,5,10).Note also that instead of just splitting the 

input block into 32-bit words and using them d recently, SHA-1 shuffles and 

mixes them using rotates & XOR’s to form more complex input, and greatly increases the 

difficulty of finding collisions. A sequence of logical functions f0, f1,..., f79 is used in the SHA- 

1. Each ft, 0<=t<=79, operates on three 32-bit words B, C, D and produces a 32-bit word as 

output. ft(B,C,D) is defined as follows: for words B, C, D, ft(B,C,D) = (B AND C) OR 

((NOT B) AND D) ( 0 <= t <= 19) ft(B,C,D) = B XOR C XOR D (20 <= t <= 39) ft(B,C,D) 

= (B AND C) OR (B AND D) OR (C AND D) (40 <= t <= 59) ft(B,C,D) = B XOR C XOR 

D (60 <= t <= 79). 

 
WHIRLPOOL HA H FUNCTION 

• Created by Vincent Rijmen and Paulo S. L. M. Barreto 

• Hashes messages of plaintext length 2^256 

• Result is a 512 bit message 

• Three versions have been released – WHIRLPOOL-0 – WHIRLPOOL-T – WHIRLPOOL 

 designed specifically for hash function use

 with security and efficiency of AES

 but with 512-bit block size and hence hash

 similar structure & functions as AES but
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 input is mapped row wise

 has 10 rounds

 a different primitive polynomial for GF(2^8)

 uses different S-box design & values

 “W” is a 512-bit block cipher

 “m” is the plaintext, split into 512 bit blocks

 “H” is the blocks formed from the hashes

WHIRLPOOL OVERVIEW 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
• The block cipher W is the core element of the Whirlpool hash function 

• It is comprised of 4 steps. 

– Add Round Key 



[Type text] [Type text] [Type text] 

– Shift Columns 

– Mix Rows 

– Substitute bytes 

Add Round Key 

• During the Add Round Key step, the message is XOR’d with the key 

• If this is the first message block being run through, the key is a block of all zeros 

• If this is any block except the first, the key is the digest of the previous block 

Shift Columns 

• Starting from left to right, each column gets rotated vertically a number of bytes equal to 

which number column it is, from top to bottom – 

Ex: 
• [0,0][0,1][0,2] [0,0][2,1][1,2] 

• [1,0][1,1][1,2] ------> [1,0][0,1][2,2] 

• [2,0][2,1][2,2] [2,0][1,1][0,2] 

Mix Rows 

• Each row gets shifted horizontally by the numb r of row it is. Similar to the shift 

column function, but rotated left to right – 

Ex: 

• [0,0][0,1][0,2] [0,0][0,1][0,2] 

• [1,0][1,1][1,2] ------> [1,2][1,0][1,2] 

• [2,0][2,1][2,2] [2,1][2,2][0,2] 

Substitute bytes 

• Each byte in the message is passed through a set of s-boxes 

• The output of this is then set to be the key for the next round 

HMAC 
Interest in developing a MAC, derived from a cryptographic hash code has been increasing 

mainly because hash functions are generally faster and are also not limited by export 

restrictions unlike block ciphers. Additional reason also would be that the library code for 

cryptographic hash functions is widely available. The original proposal is for incorporation of 

a secret key into an existing hash algorithm and the approach that received most support is 

HMAC. HMAC is specified as Internet standard RFC2104. It 
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makes use of the hash function on the given message. Any of MD5, SHA-1, RIPEMD-160 

can be used. 

HMAC Design Objectives 

 To use, without modifications, available hash functions

 To allow for easy replaceability of the embedded hash function

 To preserve the original performance of the hash function

 To use and handle keys in a simple way

 To have a well understood cryptographic analysis of the strength of the MAC based on 

reasonable assumptions on the embedded hash function

The first two objectives are very important for the acceptability of HMAC. HMAC treats the 

hash function as a “black box”, which has two benefits. First is that an existing 

implementation of the hash function can be used for implementing HMAC making the bulk 

of HMAC code readily available without modificat on. Second is that if ever an existing hash 

function is to be replaced, the existing hash funct on module is removed and new module is 

dropped in. The last design obj ctive provides the main advantage of HMAC over other 

proposed hash-based schemes. HMAC can be proven secure provided that the embedded 

hash function has ome reasonable cryptographic strengths. 

Steps involved in HMAC algorithm: 

1. Append zeroes to the left end of K to create a b-bit string K+ (ex: If K is of length 160-bits 

and b = 512, then K will be appended with 44 zero bytes). 

2. XOR(bitwise exclusive-OR) K+ with ipad to produce the b-bit block Si. 

3. Append M to Si. 

4. Now apply H to the stream generated in step-3 

5. XOR K+ with opad to produce the b-bit block S0. 

6. Append the hash result from step-4 to S0. 

7. Apply H to the stream generated in step-6 and output the result. 
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HMAC Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HMAC Structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The XOR with ipad results in flipping one-half of the bits of K. Similarly, XOR with opad 

results in flipping one-half of the bits of K, but different set of bits. By passing Si and S0 

through the compression function of the hash algorithm, we have pseudorandomly generated 

two keys from K. 



[Type text] [Type text] [Type text] 

HMAC should execute in approximately the same time as the embedded hash function for 

long messages. HMAC adds three executions of the hash compression function (for S0, Si, 

and the block produced from the inner hash) 

A more efficient implementation is possible. Two quantities are precomputed. 

f(IV, (K+ 

f(IV, (K+ 

where f is the compression function for the hash function which takes as arguments a chaining 

variable of n bits and a block of b-bits and produces a chaining variable of n bits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
As shown in the above figure, the values are needed to be computed initially and every time a 

key changes. The precomputed quantities substitute for the initial value (IV) in the hash 

function. With this implementation, only one additional instance of the compression function 

is added to the processing normally produced by the hash function. This implementation is 

worthwhile if most of the messages for which a MAC is computed are short. 

Security of HMAC: 
The appeal of HMAC is that its designers have been able to prove an exact relationship 

between the strength of the embedded hash function and the strength of HMAC. The 
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security of a MAC function is generally expressed in terms of the probability of successful 

forgery with a given amount of time spent by the forger and a given number of message-

MAC pairs created with the same key. Have two classes of attacks on the embedded hash 

function: 

1. The attacker is able to compute an output of the compression function even with an IV that 

is random, secret and unknown to the attacker. 

2. The attacker finds collisions in the hash function even when the IV is random and secret. 

These attacks are likely to be caused by brute force attack on key used which has work of 

order 2n; or a birthday attack which requires work of order 2(n/2) - but which requires the 

attacker to observe 2n blocks of messages using the same key - very unlikely. So even MD5 

is still secure for use in HMAC given these constraints. 

 

CMAC 
 

In cryptography, CMAC (Cipher-based Message Authentication Code)[1] is a block cipher-based 

message authentication code algorithm. It may be used to provide assurance of the authenticity 

and, hence, the integrity of binary data. This mode of operation fixes security deficiencies of 

CBC-MAC (CBC-MAC is secure only for fixed-length messages). 

The core of the CMAC algorithm is variation of CBC-MAC that Black and Rogaway 

proposed and analyzed under the name XCBC[2] and submitted to NIST.[3] The XCBC 

algorithm efficiently addresses the security deficiencies of CBC-MAC, but requires three 

keys. Iwata and Kurosawa proposed an improvement of XCBC and named the resulting 

algorithm One-Key CBC-MAC (OMAC) in their papers.[4][5] They later submitted 

OMAC1[6], a refinement of OMAC, and additional security analysis.[7] The OMAC algorithm 

reduces the amount of key material required for XCBC. CMAC is equivalent to OMAC1. 

https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/CMAC#endnote_SP800-38B
https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
https://en.wikipedia.org/wiki/CBC-MAC
https://en.wikipedia.org/wiki/CBC-MAC
https://en.wikipedia.org/wiki/CBC-MAC
https://en.wikipedia.org/wiki/John_Black_(cryptographer)
https://en.wikipedia.org/wiki/Phillip_Rogaway
https://en.wikipedia.org/wiki/CMAC#endnote_BR2
https://en.wikipedia.org/wiki/NIST
https://en.wikipedia.org/wiki/NIST
https://en.wikipedia.org/wiki/One-key_MAC
https://en.wikipedia.org/wiki/CMAC#endnote_IK2
https://en.wikipedia.org/wiki/CMAC#endnote_IK3
https://en.wikipedia.org/wiki/CMAC#endnote_IK4
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To generate an ℓ-bit CMAC tag (t) of a message (m) using a b-bit block cipher (E) and a 

secret key (k), one first generates two b-bit sub-keys (k1 and k2) using the following algorithm 

(this is equivalent to multiplication by x and x2 in a finite field GF(2b)). Let ≪ denote the 

standard left-shift operator and ⊕denote exclusive or: 

 

1. Calculate a temporary value k0 = Ek(0). 

2. If msb(k0) = 0, then k1 = k0 ≪ 1, else k1 = (k0 ≪ 1) ⊕C; where C is a certain constant 

that depends only on b. (Specifically, C is the non-leading coefficients of the 

lexicographically first irreducible degree-b binary polynomial with the minimal 

number of ones.) 

3. If msb(k1) = 0, then k2 = k1 ≪ 1, else k2 = (k1 ≪ 1) ⊕C. 

4. Return keys (k1, k2) for the MAC generation process. 
 

As a small example, suppose b = 4, C = 00112, and k0 = Ek(0) = 01012. Then k1 = 10102 and k2 

= 0100 ⊕0011 = 01112. 

The CMAC tag generation process is as follows: 

 

1. Divide message into b-bit blocks m = m1 ∥ ... ∥ mn−1 ∥ mn where m1, ..., mn−1 are 

complete blocks. (The empty me age is treated as 1 incomplete block.) 

2. If mn is a complete block then mn′ = k1 ⊕mn else mn′ = k2 ⊕(mn∥ 10...02). 

3. Let c0 = 00…02. 

4. For i = 1, ..., n-1, calculate ci = Ek(ci−1 ⊕mi). 

5. cn = Ek(cn−1 ⊕mn′) 

6. Output t = msbℓ(cn). 
 

The verification process is as follows: 

 

1. Use the above algorithm to generate the tag. 

2. Check that the generated tag is equal to the received tag. 

DIGITAL SIGNATURE 

The most important development from the work on public-key cryptography is the digital 

signature. Message authentication protects two parties who exchange messages from any third 

party. However, it does not protect the two parties against each 

https://en.wikipedia.org/wiki/Finite_field
https://en.wikipedia.org/wiki/Exclusive_or#Computer_science
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other. A digital signature is analogous to the handwritten signature, and provides a set of 

security capabilities that would be difficult to implement in any other way. It must have the 

following properties: 

• It must verify the author and the date and time of the signature 

• It must to authenticate the contents at the time of the signature • It must be verifiable by 

third parties, to resolve disputes Thus, the digital signature function includes the 

authentication function. A variety of approaches has been proposed for the digital signature 

function. These approaches fall into two categories: direct and arbitrated. 

Direct Digital Signature 

Direct Digital Signatures involve the direct application of public-key algorithms involving 

only the communicating parties. A digital signature may be formed by encrypting the entire 

message with the sender’s private key, or by encrypting a hash code of the message with the 

sender’s private key. Confidentiality can be provided by further encrypting the entire 

message plus signature using either public or private key schemes. It is important to perform 

the signature function first and then an outer confidentiality function, since in case of dispute, 

some third party must view the message nd its signature. But these approaches are dependent 

on the security of the sender’s private-key. Will have problems if it is lost/stolen and 

signatures forged. Need time-stamps and timely key revocation. 

Arbitrated Digital Signature 

The problems associated with direct digital signatures can be addressed by using an arbiter, in 

a variety of possible arrangements. The arbiter plays a sensitive and crucial role in this sort of 

scheme, and all parties must have a great deal of trust that the arbitration mechanism is 

working properly. These schemes can be implemented with either private or public- ey 

algorithms, and the arbiter may or may not see the actual message contents. Using 

Conventional encryption 

X A : M || E ( Kxa ,[ IDx || H (M) ] ) 

A Y : E( Kay ,[ IDx || M || E (Kxa ,[ IDx ||H(M))] ) || T ]) 

 It is assumed that the sender X and the arbiter A share a secret key Kxa and that A and Y 

share secret key Kay. X constructs a message M and computes its hash value H(m) . Then 

X transmits the message plus a signature to A. the signature consists of an identifier IDx 

of X plus the hash value, all encrypted using Kxa.

 A decrypts the signature and checks the hash value to validate the message. Then A 

transmits a message to Y, encrypted with Kay. The message includes IDx, the original 

message from X, the signature, and a timestamp.
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 Arbiter sees message

 Problem : the arbiter could form an alliance with sender to deny a signed message, or 

with the receiver to forge the sender’s signature.

 
Using Public Key Encryption 

X A : IDx ||E( PRx,[ IDx|| E ( PUy, E( PRx, M))]) 

A Y : E( PRa, [ IDx ||E (PUy, E (PRx, M))|| T] ) 

X double encrypts a message M first with X’s private key, PRx, and then with Y’s public key, 

PUy. This is a signed, secret version of the message. This signed message, together with X’s 

identifier , is encrypted again with PRx and, together with IDx, is sent to A. The inner, double 

encrypted message is secure from the arbiter (and everyone else except Y) 

 A can decrypt the outer encryption to assure that the message must have come from X 

(because only X has PRx). Then A transmits a message to Y, encrypted with PRa. The 

message includes IDx, the double encrypted message, and timestamp.

 Arbiter does not see message

Digital Signature Standard (DSS) 

 
The National Institute of Standards and Technology (NIST) has published Federal 

Information Processing Standard FIPS 186, known as the Digital Signature Standard (DSS). 

The DSS makes use of the Secure Ha h Algorithm (SHA) and presents a new digital 

signature technique, the Digital Signature Algorithm (DSA). The DSS uses an algorithm that 

is designed to provide only the digital signature function and cannot be used for encryption or 

key exchange, unlike RSA. 

The RSA approach is shown below. The message to be signed is input to a hash 

function that produces a secure hash code of fixed length. This hash code is then encrypted 

using the sender's private key to form the signature. Both the message and the signature are 

then transmitted. 
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The recipient takes the message and produces a hash code. The recipient also decrypts 

the signature using the sender's public key. If the calculated hash code matches the decrypted 

signature, the signature is accepted as valid. Because only the sender knows the private key, 

only the sender could have produced a valid signature. 

The DSS approach also makes use of a hash function. The hash code is provided as 

input to a signature function along with a random number k generated for this particular 

signature. The signature function also depends on the sender's private key (PRa) and a set of 

parameters known to a group of communicating principals. We can consider this set to 

constitute a global public key (PUG).The result is a signature consisting of two components, 

labeled s and r. 

 

 

 

 

 

 

 

 

 

 
 

At the receiving end, the hash code of the incoming message is generated. This plus 

the signature is input to a verification function. The verification function also depends on the 

global public key as well as the sender's public key (PUa), which is paired with the sender's 

private key. The outp t of the verification function is a value that is equal to the signature 

component r if the signature is valid. The signature function is such that only the sender, with 

knowledge of the private key, could have produced the valid signature. 

 

KNAPSACK ALGORITHM 

 
Public-Key cryptography was invented in the 1970s by Whitfield Diffie, Martin Hellman 

and Ralph Merkle. 

 

Public-key cryptography needs two keys. One key tells you how to encrypt (or code) a 

message and this is "public" so anyone can use it. The other key allows you to decode (or 

decrypt) the message. This decryption code is kept secret (or private) so only the person who 

knows the key can decrypt the message. It is also possible for the person 
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with the private key to encrypt a message with the private key, then anyone holding the 

public key can decrypt the message, although this seems to be of little use if you are trying to 

keep something secret! 

 

The First General Public-Key Algorithm used what we call the Knapsack Algorithm. 

Although we now know that this algorithm is not secure we can use it to look at how these 

types of encryption mechanisms work. 

 

The knapsack algorithm works like this: 

Imagine you have a set of different weights which you can use to make any total weight that 

you need by adding combinations of any of these weights together. Let us look at an 

example: 

Imagine you had a set of weights 1, 6, 8, 15 and 24. To pack a knapsack weighing 30, you 

could use weights 1, 6, 8 and 15. It would not be possible to p ck a knapsack that weighs 17 

but this might not matter. 

You might represent the weight 30 by the binary code 11110 (one 1, one 6, one 8, one 

15 and no 24). 

Example: 
 

 

Plain text 10011 11010 01011 00000 
 

 

Knapsack 1 6 8 15 24 1 6 8 15 24 1 68 15 24 1 68 15 24 
 

 

Cipher text 1 + 15 + 24 = 40 1 + 6 + 15 = 22 6 +15 + 24 = 45 0 =0 
 

 
 

What total weights is it possible to make? 

 

So, if someone sends you the code 38 this can only have come from the plain text 01101. 

When the Knapsack Algorithm is used in public key cryptography, the idea is to create two 

different knapsack problems. One is easy to solve, the other not. Using the easy knapsack, the 

hard knapsack is derived from it. The hard knapsack becomes the public key. The easy 

knapsack is the private key. The public key can be used to encrypt messages, but cannot be 

used to decrypt messages. The private key decrypts the messages. 
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The Superincreasing Knapsack Problem 

 

An easy knapsack problem is one in which the weights are in a superincreasing sequence. A 

superincreasing sequence is one in which the next term of the sequence is greater than the 

sum of all preceding terms. For example, the set {1, 2, 4, 9, 20, 38} is superincreasing, but 

the set {1, 2, 3, 9, 10, 24} is not because 10 < 1+2+3+9. 

 

It is easy to solve a superincreasing knapsack. Simply take the total weight of the knapsack 

and compare it with the largest weight in the sequence. If the total weight is less than the 

number, then it is not in the knapsack. If the total weight is greater then the number, it is in 

the knapsack. Subtract the number from the total, and compare with the next highest number. 

Keep working this way until the total reaches zero. If the total doesn't reach zero, then there 

is no solution. 

 

So, for example, if you have a knapsack that weighs 23 that has been made from the weights 

of the superincreasing series {1, 2, 4, 9, 20, 38} then it does not contain the weight 38 (as 38 

> 23) 

but it does contain the weight 20; leaving 3; which does not contain the weight 9 still leaving 

3; which does not contain the weight 4 still leaving 3; 

which contains the weight 2, leaving 1; which contains the weight 1. 

The binary code is therefore 110010. 

 

It is much harder to decrypt a non-superincreasing knapsack problem. Give a friend a non-

super increasing knapsack and a total and see why this is the case. 

One algorithm that uses a superincreasing knapsack for the private (easy) key and a non-

superincreasing knapsack for the public key was created by Merkle and Hellman They did 

this by taking a superincreasing knapsack problem and converting it into a non-

superincreasing one that could be made public, using modulus arithmetic. 

Making the Public Key 

To produce a normal knapsack sequence, take a superincreasing sequence; e.g. {1, 2, 4, 10, 

20, 40}. Multiply all the values by a number, n, modulo m. The modulus should be a number 

greater than the sum of all the numbers in the sequence, for example, 110. The 
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multiplier should have no factors in common with the modulus. So let's choose 31. The 

normal knapsack sequence would be: 

 

1×31 mod(110) = 31 

2×31 mod(110) = 62 

4×31 mod(110) = 14 

10×31 mod(110) = 90 

20×31 mod(110) = 70 

40×31 mod(110) = 30 

 

 
So the public key is: {31, 62, 14, 90, 70, 30} and 

the private key is {1, 2, 4, 10, 20.40}. 

 

Let's try to send a message that is in binary code: 

100100111100101110 

The knapsack contains six weights so we need to split the mess ge into groups of six: 

100100 

111100 

101110 

This corresponds to three sets of weights with totals as follows 

100100 = 31 + 90 = 121 

111100 = 31+62+14+90 = 197 

101110 = 31+14+90+70 =205 

So the coded message is 121 197 205. 

 

Now the receiver has to decode the message... 

The person decoding must know the two numbers 110 and 31 (the modulus and the 

multiplier). Let's call the modulus "m" and the number you multiply by "n". 

We need n−1, which is a multiplicative inverse of n mod m, i.e. n(n−1) = 1 mod m 

In this case I have calculated n−1 to be 71. 
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All you then have to do is multiply each of the codes 71 mod 110 to find the total in the 

knapsack which contains {1, 2, 4, 10, 20, 40} and hence to decode the message. The coded 

message is 121 197 205: 

 

 

121×71 mod(110) = 11 = 100100 

197×71 mod(110) = 17 = 111100 

205×71 mod(110) = 35 = 101110 

 

 

The decoded message is: 

100100111100101110. 

Just as I thought! 

 

Simple and short knapsack codes are far too easy to break to be of any real use. For a 

knapsack code to be reasonably secure it would need well over 200 terms each of length 200 

bits. 

 

AUTHENTICATION APPLICATIONS 

KERBEROS 

Kerberos is an authentication service developed as part of Project Athena at MIT. It 

addresses the threats posed in an o en distributed environment in which users at workstations 

wish to access services on servers distributed throughout the network. Some of these threats 

are: 

 A user may gain access to a particular workstation and pretend to be another user 

operating from that workstation. 

 A user may alter the network address of a workstation so that the requests sent from 

the altered workstation appear to come from the impersonated workstation. 

 A user may eavesdrop on exchanges and use a replay attack to gain entrance to a 

server or to disrupt operations. 

 

Two versions of Kerberos are in current use: Version-4 and Version-5. The first published 

report on Kerberos listed the following requirements: 
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Secure: A network eavesdropper should not be able to obtain the necessary information to 

impersonate a user. More generally, Kerberos should be strong enough that a potential 

opponent does not find it to be the weak link. 

Reliable: For all services that rely on Kerberos for access control, lack of availability of the 

Kerberos service means lack of availability of the supported services. Hence, Kerberos 

should be highly reliable and should employ a distributed server architecture, with one 

system able to back up another. 

Transparent: Ideally, the user should not be aware that authentication is taking place, 

beyond the requirement to enter a password. 

Scalable: The system should be capable of supporting large numbers of clients and servers. 

This suggests a modular, distributed architecture 

 

Two versions of Kerberos are in common use: Version 4 is most widely used version. 

Version 5 corrects some of the security deficiencies of Vers on 4. Version 5 has been issued 

as a draft Internet Standard (RFC 1510) 

KERBEROS VERSION 4 

 

1.) SIMPLE DIALOGUE: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MORE SECURE DIALOGUE 
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The Version 4 Authentication Dialogue The full Kerberos v4 authentication dialogue is 

shown here divided into 3 phases. 
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There is a problem of captured ticket-granting tickets nd the need to determine that 

the ticket presenter is the same as the client for whom the ticket was issued. An efficient way 

of doing this is to use a session encryption key to secure information. 

Message (1) includes a time stamp, so that the AS knows that the message is timely. Message 

(2) includes several elements of the ticket in a form accessible to C. This enables C to 

confirm that this ticket is for the TGS and to learn its expiration time. Note that the ticket 

does not prove anyone's identity but is a way to distribute keys securely. It is the 

authenticator that proves the client's identity. Because the authenticator can be used only once 

and has a short lifetime, the threat of an opponent stealing both the ticket and the 

authenticator for presentation later is countered. C then sends the TGS a message that 

includes the ticket plus the ID of the requested service (message 3). The reply from the TGS, 

in message (4), follows the form of message (2). C now has a reusable service-granting ticket 

for V. When C presents this ticket, as shown in message (5), it also sends an authenticator. 

The server can decrypt the ticket, recover the session key, and decrypt the authenticator.If mutual 

authentication is required, the server can reply as shown in message (6). 
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Overview of Kerberos 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Kerberos Realms A full-service Kerberos environment consisting of a Kerberos server, a 

number of clients, and a number of application servers is referred to as a Kerberos realm. A 

Kerberos realm is a set of managed nodes that share the same Kerberos database, and are part 

of the same administrative domain. If have multiple realms, their Kerberos servers must share 

key and trust each other. 

The following figure shows the authentication messages where service is being requested 

from another domain. The ticket presented to the remote server indicates the realm in which 

the user was originally authenticated. The server chooses whether to honor the remote 

request. One problem presented by the foregoing approach is that it does not scale well to 

many realms, as each pair of realms need to share a key. 
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The limitations of Kerberos version-4 are categorised into two types: 

 Environmental shortcomings of Version 4: 

– Encryption system dependence: DES 

– Internet protocol dependence 

– Ticket lifetime 

– Authentication forwarding 

 Inter-realm authentication Technical
 

 deficiencies of Version 4: 

– Double encryption 

– Session Keys 

– Password attack 

KERBEROS VERSION 5 

Kerberos Version 5 is specified in RFC 1510 and provides a number of improvements over 

version 4 in the areas of environmental shortcomings and technical deficiencies. It includes 

some new elements such as: 

 Realm: Indicates realm of the user

 Options

 Times
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– From: the desired start time for the ticket 

– Till: the requested expiration time 

– Rtime: requested renew-till time 

 Nonce: A random value to assure the response is fresh

The basic Kerberos version 5 authentication dialogue is shown here First, consider the 

authentication service exchange. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Message (1) is a client request for a ticket -granting ticket. Message (2) returns a ticket-

granting ticket, identifying information for the client, and a block encrypted using the 

encryption key based on the user's password. This block includes the session key to be used 

between the client and the TGS. Now compare the ticket-granting service exchange for 

versions 4 and 5. See that message (3) for both versions includes an authenticator, a ticket, 

and the name of the requested service. In addition, version 5 includes requested times and 

options for the ticket and a nonce, all with functions similar to those of message (1). The 

authenticator itself is essentially the same as the one used in version 4. Message (4) has the 

same structure as message (2), returning a ticket plus information needed by the client, the 

latter encrypted with the session key now shared by the client and the TGS. Finally, for the 

client/server authentication exchange, several new features appear in version 5, such as a 

request for mutual authentication. If required, the server responds with message (6) that 

includes the timestamp from the 
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authenticator. The flags field included in tickets in version 5 supports expanded functionality 

compared to that available in version 4. 

Advantages of Kerberos: 

 User's passwords are never sent across the network, encrypted or in plain text

 Secret keys are only passed across the network in encrypted form

 Client and server systems mutually authenticate

 It limits the duration of their users' authentication.

 Authentications are reusable and durable

 Kerberos has been scrutinized by many of the top programmers, cryptologists and 

security experts in the industry

 

X.509 AUTHENTICATION SERVICE 

ITU-T recommendation X.509 is partMediaoftheX.500series of recommendations that 

define a directory service. The directory is, in effect, server or distributed set of servers that 

maintains a database of information about users. The information includes a mapping from 

user name to network address, as w ll as other attributes and information about the users. 

X.509 is based on the use of public-key cryptography and digital signatures. The heart of the 

X.509 scheme is the public-key certificate associated with each user. These user certificates 

are a umed to be created by some trusted certification authority (CA) and placed in the 

directory by the CA or by the user. The directory server itself is not responsible for the 

creation of public keys or for the certification function; it merely provides an easily 

accessible location for users to obtain certificates. 

The general format of a certificate is shown above, which includes the following 
elements: 

 version 1, 2, or 3 

 serial number (unique within CA) identifying 

certificate 

 signature algorithm identifier issuer X.500 name 

(CA) 

 period of validity (from - to dates) 

 subject X.500 name (name of owner) 

 subject public-key info (algorithm, parameters, key) 

 issuer unique identifier (v2+) 
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subject unique identifier (v2+) Media 

extension fields (v3) 

signature (of hash of all fields in certificate) 

 
The standard uses the following notation to define certificate: 

 

CA<<A>> = CA {V, SN, AI, CA, TA, A, Ap} 
 

Where Y<<X>>= the certificate of ser X issued by certification authority Y 

Y {I} == the signing of I by Y. It consists of I with an encrypted hash code appended 

User certificates generated by a CA have the following characteristics: 

1. Any user with CA’s public key can verify the user public key that was 

certified 

2.  No party other than the CA can modify the certificate without being 

detected 

3.  because they cannot be forged, certificates can be placed in a public 

directory 

 
Scenario: Obtaining a User Certificate If both users share a common CA then they are 

assumed to know its public key. Otherwise CA's must form a hierarchy and use certificates 

linking members of hierarchy to validate other CA's. Each CA has certificates for clients 

(forward) and parent (backward). Each client trusts parents certificates. It 
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enables verification of any certificate from one CA by users of all other CAs in hierarchy. A has 

obtained a certificate from the CA X1. B has obtained a certificate from the CA X2. A can read 

the B’s certificate but cannot verify it. In order to solve the problem , the Solution: X1<<X2> 

X2<<B>>. A obtain the certificate of X2 signed by X1 from directory. obtain X2’s public key. A 

goes back to directory and obtain the certificate of B signed by X2. 

obtain B’s public key securely. The directory entry for each CA includes two types of 

certificates: Forward certificates: Certificates of X generated by other CAs Reverse 

certificates: Certificates generated by X that are the certificates of other CAs 

X.509 CA Hierarchy 

 
A acquires B certificate using chain: 

X<<W>>W<<V>>V<<Y>>Y<<Z>> 

Z<<B>> B acquires A certificate using chain: 

Z<<Y>>Y<<V>>V<<W>>W<<X>> X<<A>> 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Revocation of Certificates Typically, a new certificate is issued just before the 

expiration of the old one. In addition, it may be desirable on occasion to revoke a certificate 

before it expires, for one of the following reasons: 
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 The user's private key is assumed to be compromised. 
 

 The user is no longer certified by this CA. 

 The CA's certificate is assumed to be compromised. 

Each CA must maintain a list consisting of all revoked but not expired certificates issued by 

that CA, including both those issued to users and to other CAs. These lists should also be 

posted on the directory. Each certificate revocation list (CRL) posted to the directory is 

signed by the issuer and includes the issuer's name, the date the list was created, the date the 

next CRL is scheduled to be issued, and an entry for each revoked certificate. Each entry 

consists of the serial number of a certificate and revocation date for that certificate. Because 

serial numbers are unique within a CA, the serial number is sufficient to identify the 

certificate. 

AUTHENTICATION PROCEDURES 

X.509 also includes three alternative authentication procedures that are intended for use 

across a variety of applications. All these procedures make use of public-key signatures. It is 

assumed that the two parties know each other's public key, there by obtaining each other's 

certificates from the directory or because the certificate is included in the initial message from 

each side. 1. One-Way Authentication: One way authentication involves a single transfer of 

information from one user (A) to another (B), and establishes the details shown above. Note 

that only the identity of the initiating entity is verified in this process, not that of the 

responding entity. At a minimum, the message includes a timestamp, a nonce, and the identity 

of B and is signed with A’s private key. The message may also include information to be 

conveyed, such as a session ey for B. 

 

 

 

 

 

 

 
Two-Way Authentication: Two-way authentication thus permits both parties in a 

communication to verify the identity of the other, thus additionally establishing the above 

details. The reply message includes the nonce from A, to validate the reply. It also includes a 

timestamp and nonce generated by B, and possible additional information for A. 
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Three-Way Authentication: Three-Way Authentication includes a final message from A to B, 

which contains a signed copy of the nonce, so that timestamps need not be checked, for use 

when synchronized clocks are not available. 

 

 

 

 

 

 

 

 

 

 

 

 
 


